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Unstable n-propene-metal complexes are formed when excess propene is co-condensed with 
atomic nickel or magnesium. During the formation and decomposition of these complexes, the 
ligand undergoes a double-bond isomerization by a 1,3-hydrogen shift. Infrared and mass spectro- 
scopic data from CD&H=CH,/metal complexes show metal-induced, sequential, intramolecular, 
hydrogen exchange reactions: CD,CH=CH, + CH,DCH=CD* + cis-CHD,CH=CHD + trans- 
CHD,CH=CHD. No n-ally1 species is observed during these reactions. The low decomposition 
temperatures of Ir-propene-nickel and -magnesium complexes (both about - 140°C) and the low 
isomerization activation energies (less than -0.5 kcal/mol) suggest direct formation of isomeriza- 
tion products from the n-propenes without the intervention of any ally1 intermediates. The 
?r-propene may also be the only surface species necessary to account for the products in isomeriza- 
tion, hydrogen exchange, and hydrogenation reactions of propene on zinc oxide catalyst. 

INTRODUCTION imental answer. In this report evidence is 
presented that the r-propene-nickel com- 

An unstable propene-nickel complex plex and the unstable propene-magnesium 
formed during the codeposition of excess charge-transfer complex both undergo dou- 
propene with atomic nickel at liquid nitro- ble-bond isomerization by 1,3-hydrogen 
gen temperature (I ) had been shown from shift during formation and decomposition 
its infrared spectrum to be a a-propene- of the complexes. 
nickel complex that decomposed into me- 
tallic nickel and propene at about - 140°C EXPERIMENTAL 

(2). Earlier, Skell and co-workers (I) had All experimental data reported in this 
suggested that this P-propene complex was study were obtained earlier from infrared 
undergoing a rapid interconversion with a spectroscopic investigations of low-temper- 
rr-ally1 nickel hydride since co-condensa- ature propene matrices containing various 
tion of propene and propene-d, led to iso- metal atoms (2). The experimental tech- 
topic scrambling. Although Boenneman (3) niques, the low-temperature infrared cell 
had reported the r-ally1 nickel hydride to with the metal vaporization unit, the spec- 
be unstable even at - lWC, neither this troscopic instrumentation, and the sources 
species nor its stable disproportionation of chemicals were described in detail 
product bis-lr-ally1 nickel was observed before. 
during the previous spectroscopic study 
(2). Thus, the question, whether the spec- RESULTS 

troscopically observed w-propene complex The infrared spectrum of rr-propene- 
is a kinetically significant intermediate in nickel complex and fundamental vibra- 
such catalytic reactions as olefin double- tional frequencies of nickel complexes of 
bond isomerization and hydrogen exchange CH&H=CH,, CD&D=CD,, and CDS 
reactions, still exists and requires an exper- CH=CH2 were presented previously (2). 
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I I 
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FIG. 1. Infrared spectrum of CD,CH=CH, at -190°C. Left spectrum: free propene. Middle 
spectrum: initial spectrum of matrix with nickel atoms. Right spectrum: recovered matrix. 

Also, it was shown that the spectrum of the 
unstable, black, charge-transfer-type, pro- 
pene-magnesium complex was indistin- 
guishable from that of propene itself. No 
isotopic dilution, for example, through ex- 
change with traces of water, was evident 
from the infrared spectrum of CD3 
CD=CD2 recovered from the experiments. 
Neither was there evidence of propane for- 
mation in the recovered samples of CD, 
CD=CD, and CD,CH=CH,. 

The exchange reaction between CHI 
CH=CH, and CD&D=CD2 observed ear- 
lier by Skell et al. (I) was not studied here 
because only partial infrared data on cis- 
and trans-CH,CH=CHD by Zerbi et aI. (4) 
and no data on propene-d, were available 
to assist in the identification of possible ex- 
change products. The partial data on iso- 
topic propenes reported by Dent and Kokes 
(5) were also inadequate for this purpose. 
However, assignments of the spectrum of 
CD3CH=CHL have been reported by Zerbi 
et al. (4), by Silvi ef al. (6), and by Abe (7). 

Thus, metal complexes of CD&H=CH, 
were examined in detail for possible hydro- 
gen exchange reactions. 

The occurrence of hydrogen exchange 
reactions in a CD,CH=CHB matrix con- 
taining atomic nickel is clearly evident from 
the spectra shown in Fig. 1. The left spec- 
trum is from a matrix without any nickel 
atoms, and its prominent bands at 1000, 
913, 872, and 777 cm-’ are assigned to the 
out-of-plane CH wag modes in -CH= and 
=CH,, the out-of-plane CD, wag, and the 
in-plane CD3 rock, respectively. The cen- 
tral spectrum in the figure is from an initial 
scan of a matrix containing nickel atoms, 
and it shows new bands at 960, 826, 728, 
and 7 13 cm-l arising from unstable isotopic 
r-propene-nickel complexes. The relative 
intensities of these new bands remained es- 
sentially constant as the sample was 
warmed repeatedly to about - 135°C. Dur- 
ing these warming cycles the matrix bands 
at 1000, 913, 872, and 777 cm-’ became 
progressively weaker but retooling of the 
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matrix did not produce any new absorption 
bands nor changes in relative band intensi- 
ties. However, enhanced intensities of the 
713- and 728-cm-’ peaks, as well as the 
presence of other new bands in the spec- 
trum of the recovered matrix shown on the 
right of the figure, provide convincing evi- 
dence that the hydrogen scrambling reac- 
tions had occurred during the formation 
and the decomposition of the unstable IP 
propene complex. Whether these hydrogen 
exchange reactions were inter- or intramo- 
lecular processes could not be determined 
from the infrared data, but mass spectro- 
scopic analyses suggested intramolecular 
processes to be dominant since no 
significant amount of C3H2D4 was found in 
the recovered matrix samples or in the orig- 
inal C,H,DS sample. 

In the central spectrum of Fig. 1, the 728- 
cm-’ peak is slightly weaker than the 713- 
cm-’ peak, but in the spectrum of the re- 
covered matrix on the right, these relative 
intensities are reversed. Peak frequencies 
of these bands in 7r-propene complex and 
solid propene as well as in gaseous propene 
were essentially unchanged. A similar in- 
tensity reversal was observed between the 
matrix collected from decompositions of V- 
propene complexes at temperatures below 
about - 120°C and the matrix recovered at 
temperatures from - 120°C to room temper- 
ature. Consequently, these peaks arise 
from two different isotopic propene mole- 
cules with the 713- and 728-cm-’ peaks rep- 
resenting, respectively, the initial and final 
products of hydrogen exchange reactions. 
In the carbon double-bond stretch region, 
the low-temperature infrared spectrum of a 
recovered propene sample showed in addi- 
tion to the parent band at 1642 cm-’ three 
new bands at 1622, 1615, and 1606 cm-‘. In 
this case, the relative intensity of the 1622- 
cm-’ peak was much greater than the inten- 
sities of other new peaks in the matrix re- 
covered at temperatures above - 120°C. 
The 1622~cm-’ band, therefore, must be as- 
sociated with a final reaction product of the 
hydrogen scrambling reactions. 

According to assignments of the spec- 
trum of propene-d, (4, 6, 7), the 728- and 
713-cm-’ bands in the right spectrum of 
Fig. 1 are in the proper region where the 
intense CD out-of-plane wag modes should 
appear. However, since the CD stretch 
mode band in the functional group =CD- 
expected near 2250 cm-l was not observed, 
these bands must arise from the deuterium 
wag modes in =CHD and =CD,. The 713- 
cm-’ band may be assigned readily to the 
=CD, group since the corresponding mode 
in propene-d, appears at 710 cm-‘. This 
leaves the 728~cm-l band to be associated 
with either the cis or trans isomer of the 
=CHD species. The only infrared data on 
cis- and trans-CH,CH=CHD are those re- 
ported by Zerbi et al. (4), but data on cis 
and tram isomers of l,Ibutadiene-l-d, 
have been obtained by Abe (7, 8). Zerbi et 
al. assigned for the CD wag 800 cm-l (cis) 
and 821 cm-’ (tram), whereas Abe gave 
719 cm+ (cis) and 674 cm-’ (tram). Since 
the assignments of Abe are generally more 
consistent with those of Silvi et al. (6), 
Abe’s choice is adopted here and the 728- 
cm-l band in the spectrum of the recovered 
matrix is associated with the cis species of 
the =CHD products. Thus, the observed 
intensity reversal in the 713- and 728-cm-’ 
bands with decomposition temperatures of 
the unstable 7r-propene-nickel complex 
suggests that CH,DCH=CD, is the initial 
exchange product and cis-CHD&H=CHD 
is formed subsequently. 

The assignments of three new bands ob- 
served in the C=C stretch region impose 
no difhculty. Both Abe (7) and Zerbi et al. 
(4) agree that the double-bond stretch fre- 
quencies decrease in the order of trams-d1 
isomer, c&d1 isomer, and -CH=CD2 spe- 
cies. Therefore, the frequency assignments 
are: 1642 cm-l for the parent CDS 
CH=CH2, 1622 cm-l for trans-CHD, 
CH=CHD, 1615 cm-’ for cis-CHD, 
CH=CHD, and 1606 cm-’ for CH, 
DCH=CD,. The observed increase in 
relative intensity of the 1622-cm-’ band 
when w-propene complexes were decom- 
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posed at higher temperatures indicates that The magnesium atom complex of pro- 
the final product of hydrogen scrambling pene, which was shown earlier to be an 
reactions is trans-CHD,CH=CHD. Thus, unstable charge-transfer complex (2), was 
the exchange sequence is evidently CDS also found to isomerize during its formation 
CH=CH2 + CH,DCH=CD, + cis-CHD, and decomposition. Propene-d, used in the 
CH=CHD + trans-CHD,CH=CHD. nickel experiments was used again in the 

Additional support for the above inter- magnesium study, but the infrared spec- 
pretation, that the principal reaction caus- trum of recovered products from the mag- 
ing hydrogen exchanges during formation nesium system showed a substantial in- 
and decomposition of isotopic r-propene- crease in isotopically scrambled propenes. 
nickel complexes involves a 1,3-shift of hy- The mass spectrum of a recovered sample 
drogen atoms, comes from a mass spectrum is also presented in Table 1, and it shows an 
of propene recovered from decomposition additional increase in the -CH=CD, spe- 
of the nickel complex of CD&H=CH,. AC- ties over what was present in the matrix 
cording to the data summarized in Table 1, gas from the nickel study. The decrease in 
the recovered propene contains a signifi- relative intensity of the mass 28 peak from 
cantly increased fraction of -CH=CHD the nickel spectrum suggests that subse- 
and -CH=CD2 species. The greater quent isomerization of CH,DCH=CD* in 
increase in the relative intensity of the the magnesium complex was hindered. The 
-CH=CHD peak compared to that of the relative intensities of the 728- and 713-cm-’ 
-CH=CD, peak is consistent with the bands in the infrared spectrum of recovered 
conclusion from the infrared data that cis- propene also supported this interpretation 
and truns-CHD,CH=CHD are formed since the 713-cm-l =CD2 peak increased 
from the initial product CH2DCH=CD,. by 83% whereas the 728-cm-l cis =CHD 
Although the mass 30 peak assigned to the changed by only 50% after complexation 
-CD=CD, group also shows an increase with the magnesium atom. Metallic resi- 
of a factor of 2, the ratio of relative inten- dues from decomposition of the magnesium 
sity of this peak to the parent mass 45 peak complex did not cause additional isomeri- 
was 0.10 ‘in the original propene-d, sample zation of propene even after overnight con- 
and 0.078 in the recovered propene. tact with the gas at room temperature. 

TABLE 1 

Isotopic Composition of CD&H=CH, before and after Complexation with Atomic Nickel and Magnesium 

Mass numbep Assignment 

Original 

Relative peak intensity 

Nickel Magnesium 

45 Parent(CD,CH=CH,) l.oob l.OOb 1.W 
44 Parent-H 1.06 1.00 1.26 
43 Parent-D 0.80 0.67 1.02 
42 Parent-H,D 0.28 0.41 0.63 
41 Parent-2D 0.77 0.82 1.16 
40 Parent-H,ZD 0.65 0.76 0.97 

27 Parent(CH=CH,) l.OOb l.OOb 1.00* 
28 CH=CHD 0.59 1.64 1.02 
29 CH=CD, 0.32 0.58 0.79 
30 CD=CD, 0.085 0.15 0.23 

a Data from Extranuclear Quadrupole Type II mass spectrometer operating at 100 V ionization energy. 
L Used as reference mass peak. 
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DISCUSSION 

Nickel and magnesium atoms have been 
shown to induce isomerization of propene 
by 1,3-hydrogen shift. This isomerization 
occurred only during formation and decom- 
position of the ?r-propene-nickel complex 
or the charge-transfer-type propene-mag- 
nesium complex. Since both complexes de- 
composed near - 140°C their zero-point 
energies must be fairly close to the top of 
the potential energy barrier in the reaction 
path leading to the isomerization products. 
If the thermal energy at - 140°C is taken as 
a measure of the isomerization activation 
energy, then the difference in energy be- 
tween the reactants and the transition state 
is likely to be smaller than about 0.5 
kcal/mol. Since no v-ally1 nickel hydride 
nor bis-q-ally1 nickel was detected during 
the isomerization by nickel, the observed 
n-propene must go directly to the reaction 
product without the formation of an ally1 
intermediate. A similar conclusion is rea- 
sonable for the magnesium case also. Thus, 
the unstable Ir-propene complexes are in- 
deed the kinetically significant intermediate 
in the isomerization of propene by nickel 
and magnesium atoms. 

Both a rr-ally1 and a m-propene species 
had been identified by Dent and Kokes 
(5, 9) in the infrared spectra of isotopic pro- 
penes adsorbed on zinc oxide catalyst. The 
m-propene was a weakly bonded surface 
species characterized by a single new infra- 
red band at 1620 cm-l, but the anionic (10) 
?r-ally1 species was strongly adsorbed and 
required an evacuation time of 1.5 h at 
125°C for its complete removal (5). From 
the infrared data (5, 9) and subsequent mi- 
crowave analysis of products from hydro- 
gen exchange and hydrogenation reactions, 
Naito et af. (ii ) and Kokes and co-workers 
(9, Z2) concluded that the ~allyl anion was 
the intermediate in the isomerization and 
hydrogen exchange reactions but the inter- 
mediate in the hydrogenation reaction was 
the T-propene species. However, accord- 
ing to the results from the present study, all 

three reactions can have a common inter- 
mediate, namely, the 7r-propene surface 
species. In this case, the existing experi- 
mental data may be interpreted equally well 
in terms of the following elementary steps 
for surface reactions taking place on zinc 
oxide: 

CSHB + ZnO = n-C3Hs. ZnO, (1) 

( ZW+n-C3HS- OH-), (2) 

7r-C,Hs * ZnO + Dz G= 
n-CSH5D. ZnO + HD, (3) 

w-&H, . ZnO + DZ + 
C3H8D2 + ZnO. (4) 

Reaction (1) in the above mechanism is a 
slightly exothermic reversible formation of 
the weakly bonded surface 7r-propene spe- 
cies, and it corresponds to the formation of 
the 7r-propene species observed at low tem- 
peratures in the atomic nickel and magne- 
sium systems in the present study. During 
the forward and reverse steps in this reac- 
tion, double-bond isomerization by 1,3-hy- 
drogen shift can occur. The exothermic re- 
action (2) merely serves as a sink for 
propene in this mechanism. This reaction 
was absent in the nickel and magnesium 
systems of the present study. Reactions (3) 
and (4) represent, respectively, the revers- 
ible hydrogen exchange and an irreversible 
hydrogenation reaction. Equivalent reac- 
tions in the rr-propene-nickel system were 
not studied here, but Skell et al. (I) had 
reported that treatment of the nickel com- 
plex with DzO gave some deuterated pro- 
penes and propanes. Also, direct spectro- 
scopic examination of recovered products 
from rr-propene-nickel complex decom- 
posed in the presence of DZ indicated that 
reactions equivalent to steps (3) and (4) can 
also take place in the atomic nickel system 
(13). 
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